Causal inference

Arvid Sjölander

Department of Medical Epidemiology and Biostatistics Karolinska Institutet

Definition of epidemiology

Epidemiology is the science that studies the patterns, **causes**, **and effects** of health and disease conditions in defined populations.

Wikipedia, 2017

Causality in epidemiology

- Does smoking cause lung cancer?
- Does red wine protect against cardiovascular disease?
- Does ADHD medication prevent traffic accidents?

Causality in other fields

- How much of recent climate changes are due to human greenhouse gas emission?
- Can we reduce criminality in society by employing more police and/or punish convicted criminals harder?
- Why have extreme right-wing parties recently gained popularity in many European countries?

Conclusion

- Most scientific research questions are about cause and effect
- In this sense, most research is 'causal inference'

Definition of 'causal inference'

- A methodological branch of statistics, which aims to
 - establish a formal (mathematical) language for causal reasoning - done
 - use this language to develop appropriate statistical methods for making causal inference - ongoing

The language

- Potential outcomes
 - an algebraic tool to define causal parameters
- Direct Acyclic Graphs (DAGs)
 - a visual tool to derive appropriate analysis for estimating causal parameters

The statistical methods

- Instrumental variables
- Mediation analysis
- Interaction analysis
- Propensity scores
- Inverse probability weighting
- Marginal structural models
- Structural nested models
- ... and many others!

Outline

Potential outcomes

Directed Acyclic Graphs

Outline

Potential outcomes

Directed Acyclic Graphs

Due to ...

Donald Rubin (Harvard University)

James Robins (Harvard School of Public Health)

Example

- Research question: does smoking during pregnancy (X) cause malformations in the offspring (Y)?
- Data:

 Is there a statistical association between smoking and malformations?

Solution

- Malformations in offspring are more common among non-smokers than among smokers
- An inverse association!

$$RR = \frac{p(Y=1|X=1)}{p(Y=1|X=0)} = \frac{1/2}{1/1} = 0.5$$

Example

id	X	Y
1	1	0
2	1	1
3	0	1

 Sampling variability aside, can we say that smoking protects against malformations?

Solution

id	X	Y
1	1	0
2	1	1
3	0	1

- No!
- The smokers may be systematically different than the non-smokers
 - e.g. younger, more physically active, healthier diet etc
- · 'Confounding'

What is the target parameter?

Clearly, the associational risk ratio

$$RR = \frac{p(Y = 1|X = 1)}{p(Y = 1|X = 0)}$$

is not the causal target parameter

- In fact, 'standard' statistical language cannot be used to define causal parameters
- Without a proper definition of the target parameter, we can't be sure that we use an appropriate analysis

Towards a causal target parameter

The associational risk ratio

$$RR = \frac{p(Y=1|X=1)}{p(Y=1|X=0)}$$

compares 'apples with pears'

- the people in the numerator (smokers) are not the same people as those in the denominator (non-smokers)
- To avoid systematic differences, a causal parameter must compare 'apples with apples'
 - same people in numerator and denominator

Potential outcomes

- We think of each subject as having two potential outcomes
 - Y₀ = the outcome if the subject would hypothetically be unexposed (e.g. would not smoke)
 - Y₁ = the outcome if the subject would hypothetically be exposed (e.g. would smoke)

id	Y_0	Y_1
1	0	0
2	0	1
3	1	1

The causal risk ratio

- We define the causal risk ratio as a comparison of two hypothetical scenarios
 - everybody unexposed, vs
 - everybody exposed

$$CRR = \frac{p(Y_1 = 1)}{p(Y_0 = 1)} = \frac{2/3}{1/3} = 2$$

Association vs causation

Association:

Factually unexposed

Factually exposed

$$p(Y = 1 | X = 0) \text{ vs } p(Y = 1 | X = 1)$$

Causation:

Everybody unexposed

Everybody exposed

$$p(Y_0 = 1) \text{ vs } p(Y_1 = 1)$$

Ideal vs real data

- Ideally, we could observe both potential outcomes for any given subject
- In reality, we can only observe one of them the one that corresponds to the factual exposure level for that subject
- The other is unobserved or counterfactual

id	X	Y	Y_0	Y_1
1	1	0	? (0)	0
2	1	1	? (0)	1
3	0	1	1	? (1)

Want to do this...

Everybody unexposed

Everybody exposed

$$p(Y_0 = 1) \text{ vs } p(Y_1 = 1)$$

• No systematic differences

...but can only do this

Factually unexposed Factually exposed p(Y = 1 | X = 0) vs p(Y = 1 | X = 1)

Systematic differences

Solution

- Try to eliminate systematic differences between exposed and unexposed, so that association = causation
- By design: randomization
- By analysis: confounding control

Randomization

- Assign exposure levels by the flip of a coin
- Removes all systematic differences between exposed and unexposed: association = causation!
- Practical problems:
 - unethical
 - expensive
 - difficult

Confounding control

- Control for measured confounders in the statistical analysis
 - stratification
 - matching
 - regression modelling
 - propensity scores
 - inverse probability weighting
 - etc etc etc
- Only removes systematic differences due to confounders that we explicitly control for
- Systematic differences may remain, due to unmeasured confounders: association = causation?

What to control for?

- Often, we have measured a large set of variables, which we could potentially control for in the analysis
 - e.g. register-based research
- Which of these should we control for?
- Are there any variables we should **not** control for?
- Enter DAGs!

But really, what has been gained?

 We may define the causal effect, using potential outcomes, as

$$CRR = \frac{p(Y_1 = 1)}{p(Y_0 = 1)}$$

But all we can ever observe is a statistical association

$$RR = \frac{p(Y = 1|X = 1)}{p(Y = 1|X = 0)}$$

 Even if potential outcomes may add conceptual clarity, one may question if they have any practical value

More complex scenarios

- Potential outcomes have proven extremely useful in more complex scenarios
 - Instrumental variable studies
 - Studies of mediation and interaction
 - Longitudinal studies with time-varying exposures and confounders
- In these scenarios, there is not one, but several possible causal target parameters
- Without a proper definition of the target parameter, we can't be sure that we use an appropriate analysis
- Largely overlooked in 'standard' statistical literature, not using potential outcomes

Outline

Potential outcomes

Directed Acyclic Graphs

Due to ...

Judea Pearl (UCLA)

A simple DAG

- Each arrow represents a causal effect
- The graph is
 - Directed, since each connection between two variables consists of an arrow
 - Acyclic, since the graph contains no directed cycles
- Formal connection to potential outcomes through non-parametric structural equations
 - beyond this seminar

Causal and non-causal paths

- There are two paths between *X* and *Y*:
 - X → Y
 - X ← Z → Y
- · Only the first path is causal
 - if we remove the arrow from X to Y, then X has no causal effect on Y

Confounding in DAGs

- The variable Z is a common cause of the exposure X and the outcome Y - a confounder
- The non-causal path X ← Z → Y induces a statistical association between X and Y
 - even in the absence of the causal effect X → Y

Randomization in DAGs

- Randomization breaks the influence of Z on X
- Thus, the non-causal path X ← Z → Y no longer exists
 - ... and no other non-causal paths either
- Association = causation

DAGs can be used for confounder selection

- 1. Use subject matter knowledge to draw the DAG (by no means trivial!)
- 2. Use simple graphical rules to determine what to control for
 - attempt to 'block' non-causal paths between the exposure and the outcome
 - if all non-causal paths are blocked, then association = causation

Example

No *a priori* knowledge

Cannot construct a plausible DAG

soc status/education

family history age malformation smoking diet

birth status

Ok... but are you really the right person to do this study?

Weak a priori knowledge

Cannot settle with one plausible DAG

Present all plausible DAGs, and the implied analyses.

Summary

- Causal inference has been an intense research field the last $\sim\!30$ years
- It has generated many new methods and countless papers
- Much of this success can be attributed to the development of a formal causal language
 - enables proper definitions of causal parameters
 - can be used to derive appropriate analyses for estimating causal parameters
- The key elements in this language are potential outcomes and DAGs

Read more

- Pearl, J (2009). Causality. Cambridge University Press (2nd edition).
- Judea Pearl's home page (search for 'introduction')
- Hernan MA, Robins JM (2018). Causal Inference. Boca Raton: Chapman & Hall/CRC, forthcoming.